
Dr. SNS RAJALAKSHMI

COLLEGE OF ARTS AND SCIENCE

(AUTONOMOUS)

Accredited by NAAC (Cycle-III) with ‘A+’ Grade

DEPARTMENT OF COMPUTER APPLICATIONS (PG)

Course Name : SOFTWARE PROJECT MANAGEMENT

Class : I MCA

Semester : I

Year : 2022-2023

UNIT-II

Software Project Management

Topic: STEP WISE : An overview of project planning

1

2

• Planning is the most difficult process in project management.

The framework described is called the Stepwise method to

help to distinguish it from other method.

Step Wise Project Planning

3

Step 0: Select Project

Step 1: Identify project scope and objectives

Step 1.1 : Identify objectives and practical measures of the

effectiveness in meeting those objectives

Step 1:2 : Establish a project authority

Step 1.3 : Stakeholder analysis - identify all stakeholders in the

project and their interests.

Step1.4: Modify objectives in the light of stakeholder analysis.

Step 1.5 : Establish methods of communication with all parties.

4

Step 2 : Identify project infrastructure

Step 2.2 : Identify installation standard and procedures

Step 2.3 : Identify project team organization

Step 3 : Analyse project characteristics

Step 3.1 : Distinguish the project as either objectives- or product-driven.

Step 3.2 : Analyse other project characteristics

Step 3.3 : Identify high-level project risks

Step 3.4 : Take into account use requirements concerning implementation

Step 3.5 : Select development methodology and life-cycle approach

Step 3.6 : Review overall resource estimates

5

Step 4 : Identify project products and activities

Step 4.1 : Identify and describe project products

Step 4.2 : Document generic product flows

Step 4.3 : Recognize product instances

Step 4.4 : Produce ideal activity network

Step 4.5 : Modify the ideal to take into account need for stages and

checkpoints

Step 5 : Estimate effort for each activity

Step 5.1 : Carry out bottom-up estimates

- distinguish carefully between effort and elapsed time

Step 5.2 : Revise plan to create on trollable activities

- breakup very long activities into a series of smaller ones

- bundle up very short activities
6

7

Step 6 : Identify activity risks

Step 6.1 : Identify and quantify activity based risks

- damage if risk occurs

- likelihood if risk occurring

Step 6.2 : Plan risk reduction and contingency measures

- risk reduction : activity to stop risk occurring

- contingency : action if risk does occurs

Step 6.3 : Adjust overall plans and estimates to take

account of risks

Step 7 : Allocate resources

Step 7.1 : Identify and allocate resources

Step 7.2 : Revise plans and estimates to take into account

resource constraints

Step 8 : Review/ Publicize plans

Step 8.1 : Review quality aspects of the project plan

Step 8.2 : Documenter plans and obtain agreement

Step 9 and 10 : Execute plan. Lower levels of

planning

8

Process Models

What is a Software Process Model?

Software Processes is a coherent set of activities for

specifying, designing, implementing and testing software systems. A

software process model is an abstract representation of a process that

presents a description of a process from some particular perspective.

There are many different software processes but all involve:

• Specification – defining what the system should do;

• Design and implementation – defining the organization of the system

and implementing the system;

• Validation – checking that it does what the customer wants;

• Evolution – changing the system in response to changing customer

needs. 9

Types of Software Process Model

Software processes, methodologies and frameworks range from

specific prescriptive steps that can be used directly by an organization in

day-to-day work, to flexible frameworks that an organization uses to

generate a custom set of steps tailored to the needs of a specific project or

group. In some cases a “sponsor” or “maintenance” organization distributes

an official set of documents that describe the process.

Software Process and Software Development Lifecycle Model

One of the basic notions of the software development process is

SDLC models which stands for Software Development Life Cycle models.

There are many development life cycle models that have been developed in

order to achieve different required objectives.

10

The most used, popular and important SDLC models are

given below:

• Waterfall model

• V model

• Incremental model

• RAD model

• Agile model

• Iterative model

• Spiral model

• Prototype model

11

Rapid Application Development

12

• RAD model

• The Rapid Application Development Model was first proposed

by IBM in 1980’s. The critical feature of this model is the use

of powerful development tools and techniques.

• A software project can be implemented using this model if the

project can be broken down into small modules wherein each

module can be assigned independently to separate teams.

These modules can finally be combined to form the final

product.

Rapid Application Development

13

• RAD model

• RAD is an incremental prototyping approach to software development that

end users can produce better feedback when examining a live system, as

opposed to working strictly with documentation. It puts less emphasis on

planning and more emphasis on an adaptive process.

• RAD may resulted in a lower level of rejection when the application is

placed into production, but this success most often comes at the expense of

a dramatic overruns in project costs and schedule. RAD approach is

especially well suited for developing software that is driven by user

interface requirements. Thus, some GUI builders are often called rapid

application development tools.

14

This model consists of 4 basic phases:

• Requirements Planning –

It involves the use of various techniques used in requirements

elicitation like brainstorming, task analysis, form analysis, user scenarios,

FAST (Facilitated Application Development Technique), etc. It also

consists of the entire structured plan describing the critical data, methods to

obtain it and then processing it to form final refined model.

• User Description –

This phase consists of taking user feedback and building the

prototype using developer tools. In other words, it includes re-examination

and validation of the data collected in the first phase. The dataset attributes

are also identified and elucidated in this phase.

15

This model consists of 4 basic phases:

• Construction –

In this phase, refinement of the prototype and delivery takes place. It

includes the actual use of powerful automated tools to transform process

and data models into the final working product. All the required

modifications and enhancements are too done in this phase.

• Cutover –

All the interfaces between the independent modules developed by

separate teams have to be tested properly. The use of powerfully automated

tools and subparts makes testing easier. This is followed by acceptance

testing by the user.

16

• Advantages –

• Use of reusable components helps to reduce the cycle time of

the project.

• Feedback from the customer is available at initial stages.

• Reduced costs as fewer developers are required.

• Use of powerful development tools results in better quality

products in comparatively shorter time spans.

• The progress and development of the project can be measured

through the various stages.

• It is easier to accommodate changing requirements due to the

short iteration time spans.

17

• Disadvantages –

• The use of powerful and efficient tools requires highly skilled

professionals.

• The absence of reusable components can lead to failure of the

project.

• The team leader must work closely with the developers and

customers to close the project in time.

• The systems which cannot be modularized suitably cannot use

this model.

• Customer involvement is required throughout the life cycle.

• It is not meant for small scale projects as for such cases, the

cost of using automated tools and techniques may exceed the

entire budget of the project.

18

Applications

• This model should be used for a system with known requirements and

requiring short development time.

• It is also suitable for projects where requirements can be modularized and

reusable components are also available for development.

• The model can also be used when already existing system components can

be used in developing a new system with minimum changes.

• This model can only be used if the teams consist of domain experts. This is

because relevant knowledge and ability to use powerful techniques is a

necessity.

• The model should be chosen when the budget permits the use of automated

tools and techniques required.
19

Waterfall Model

In "The Waterfall" approach, the whole process of software

development is divided into separate phases. In this Waterfall model,

typically, the outcome of one phase acts as the input for the next phase

sequentially.

20

Each of these phases produces one or more documents that need to be

approved before the next phase begins. However, in practice, these phases

are very likely to overlap and may feed information to one another.

The waterfall model is easy to understand and follow. It doesn’t require a

lot of customer involvement after the specification is done. Since it’s

inflexible, it can’t adapt to changes. There is no way to see or try the

software until the last phase.

The waterfall model has a rigid structure, so it should be used in cases

where the requirements are understood completely and unlikely to radically

change.

21

The sequential phases in Waterfall model are −

• Requirement Gathering and analysis − All possible requirements of the system to

be developed are captured in this phase and documented in a requirement

specification document.

• System Design − The requirement specifications from first phase are studied in this

phase and the system design is prepared. This system design helps in specifying

hardware and system requirements and helps in defining the overall system

architecture.

• Implementation − With inputs from the system design, the system is first

developed in small programs called units, which are integrated in the next phase.

Each unit is developed and tested for its functionality, which is referred to as Unit

Testing.

22

The sequential phases in Waterfall model are −

• Integration and Testing − All the units developed in the implementation

phase are integrated into a system after testing of each unit. Post integration

the entire system is tested for any faults and failures.

• Deployment of system − Once the functional and non-functional testing is

done; the product is deployed in the customer environment or released into

the market.

• Maintenance − There are some issues which come up in the client

environment. To fix those issues, patches are released. Also to enhance the

product some better versions are released. Maintenance is done to deliver

these changes in the customer environment.

23

Waterfall Model - Application

• Requirements are very well documented, clear and

fixed.

• Product definition is stable.

• Technology is understood and is not dynamic.

• There are no ambiguous requirements.

• Ample resources with required expertise are

available to support the product.

• The project is short.

24

Waterfall Model - Advantages

• Simple and easy to understand and use

• Easy to manage due to the rigidity of the model. Each phase

has specific deliverables and a review process.

• Phases are processed and completed one at a time.

• Works well for smaller projects where requirements are

very well understood.

• Clearly defined stages.

• Well understood milestones.

• Easy to arrange tasks.

• Process and results are well documented.

25

Waterfall Model – Disadvantages

• No working software is produced until late during the life

cycle.

• High amounts of risk and uncertainty.

• Not a good model for complex and object-oriented projects.

• Poor model for long and ongoing projects.

• Not suitable for the projects where requirements are at a

moderate to high risk of changing. So, risk and uncertainty is

high with this process model.

• It is difficult to measure progress within stages.

• Cannot accommodate changing requirements.

• Adjusting scope during the life cycle can end a project.

26

The V-process model
The V-model is a type of SDLC model where process executes in a

sequential manner in V-shape. It is also known as Verification and

Validation model. It is based on the association of a testing phase for each

corresponding development stage. Development of each step directly

associated with the testing phase. The next phase starts only after

completion of the previous phase i.e. for each development activity, there

is a testing activity corresponding to it.

27

28

• Validation: It involves dynamic analysis technique

(functional, non-functional), testing done by executing code.

Validation is the process to evaluate the software after the

completion of the development phase to determine whether

software meets the customer expectations and requirements.

• So V-Model contains Verification phases on one side of the

Validation phases on the other side. Verification and Validation

phases are joined by coding phase in V-shape. Thus it is called

V-Model.

29

Design Phase:

• Requirement Analysis: This phase contains detailed communication with the

customer to understand their requirements and expectations. This stage is known as

Requirement Gathering.

• System Design: This phase contains the system design and the complete hardware

and communication setup for developing product.

• Architectural Design: System design is broken down further into modules taking

up different functionalities. The data transfer and communication between the

internal modules and with the outside world (other systems) is clearly understood.

• Module Design: In this phase the system breaks dowm into small modules. The

detailed design of modules is specified, also known as Low-Level Design (LLD).

30

Principles of V-Model:

• Large to Small: In V-Model, testing is done in a hierarchical perspective, For

example, requirements identified by the project team, create High-Level

Design, and Detailed Design phases of the project. As each of these phases is

completed the requirements, they are defining become more and more refined

and detailed.

• Data/Process Integrity: This principle states that the successful design of any

project requires the incorporation and cohesion of both data and processes.

Process elements must be identified at each and every requirements.

31

Principles of V-Model:

• Scalability: This principle states that the V-Model concept has the flexibility to

accommodate any IT project irrespective of its size, complexity or duration.

• Cross Referencing: Direct correlation between requirements and

corresponding testing activity is known as cross-referencing.

• Tangible Documentation: This principle states that every project needs to

create a document. This documentation is required and applied by both the

project development team and the support team. Documentation is used to

maintaining the application once it is available in a production environment.

32

The Spiral model

• Spiral model is one of the most important Software Development Life

Cycle models, which provides support for Risk Handling. In its

diagrammatic representation, it looks like a spiral with many loops. The

exact number of loops of the spiral is unknown and can vary from project

to project. Each loop of the spiral is called a Phase of the software

development process. The exact number of phases needed to develop the

product can be varied by the project manager depending upon the project

risks. As the project manager dynamically determines the number of

phases, so the project manager has an important role to develop a product

using the spiral model.

33

The below diagram shows the different phases of the

Spiral Model

34

Each phase of the Spiral Model is divided into four quadrants as shown in the

above figure. The functions of these four quadrants are discussed below

• Objectives determination and identify alternative

solutions: Requirements are gathered from the customers and the

objectives are identified, elaborated, and analyzed at the start of every

phase. Then alternative solutions possible for the phase are proposed in this

quadrant.

• Identify and resolve Risks: During the second quadrant, all the possible

solutions are evaluated to select the best possible solution. Then the risks

associated with that solution are identified and the risks are resolved using

the best possible strategy. At the end of this quadrant, the Prototype is built

for the best possible solution.

35

• Develop next version of the Product: During the third quadrant, the

identified features are developed and verified through testing. At the end of

the third quadrant, the next version of the software is available.

• Review and plan for the next Phase: In the fourth quadrant, the

Customers evaluate the so far developed version of the software. In the

end, planning for the next phase is started.

36

• Risk Handling in Spiral Model

A risk is any adverse situation that might affect the

successful completion of a software project. The most

important feature of the spiral model is handling these

unknown risks after the project has started. Such risk

resolutions are easier done by developing a prototype. The

spiral model supports copying up with risks by providing the

scope to build a prototype at every phase of the software

development.

37

Advantages of Spiral Model:

Below are some advantages of the Spiral Model.

• Risk Handling: The projects with many unknown risks that occur as the

development proceeds, in that case, Spiral Model is the best development

model to follow due to the risk analysis and risk handling at every phase.

• Good for large projects: It is recommended to use the Spiral Model in

large and complex projects.

38

Advantages of Spiral Model:

Below are some advantages of the Spiral Model.

• Flexibility in Requirements: Change requests in the

Requirements at later phase can be incorporated accurately by

using this model.

• Customer Satisfaction: Customer can see the development of

the product at the early phase of the software development and

thus, they habituated with the system by using it before

completion of the total product.

39

Disadvantages of Spiral Model:

Below are some main disadvantages of the spiral model.

• Complex: The Spiral Model is much more complex than other SDLC

models.

• Expensive: Spiral Model is not suitable for small projects as it is

expensive.

• Too much dependability on Risk Analysis: The successful completion of

the project is very much dependent on Risk Analysis. Without very highly

experienced experts, it is going to be a failure to develop a project using

this model.

• Difficulty in time management: As the number of phases is unknown at

the start of the project, so time estimation is very difficult.

40

41

Software prototyping.
Prototyping is the process that enables developer to create a small

model of software.

What is Software Prototyping?

• Prototype is a working model of software with some limited

functionality. The prototype does not always hold the exact logic

used in the actual software application and is an extra effort to

be considered under effort estimation.

• Prototyping is used to allow the users evaluate developer

proposals and try them out before implementation. It also helps

understand the requirements which are user specific and may not

have been considered by the developer during product design.

• Following is a stepwise approach explained to design a software

prototype.

42

• Basic Requirement Identification

This step involves understanding the very basics

product requirements especially in terms of user

interface. The more intricate details of the internal

design and external aspects like performance and

security can be ignored at this stage.

• Developing the initial Prototype

The initial Prototype is developed in this stage, where

the very basic requirements are showcased and user

interfaces are provided. These features may not

exactly work in the same manner internally in the

actual software developed. While, the workarounds

are used to give the same look and feel to the

customer in the prototype developed. 43

• Basic Requirement Identification

Review of the Prototype

The prototype developed is then presented to the customer and

the other important stakeholders in the project. The feedback is

collected in an organized manner and used for further

enhancements in the product under development.

• Revise and Enhance the Prototype

The feedback and the review comments are discussed during

this stage and some negotiations happen with the customer

based on factors like – time and budget constraints and

technical feasibility of the actual implementation. The changes

accepted are again incorporated in the new Prototype

developed and the cycle repeats until the customer

expectations are met.

44

• Software Prototyping - Types

There are different types of software prototypes used in the industry.

Following are the major software prototyping types used widely −

• Throwaway/Rapid Prototyping

Throwaway prototyping is also called as rapid or close ended prototyping.

This type of prototyping uses very little efforts with minimum requirement

analysis to build a prototype. Once the actual requirements are understood,

the prototype is discarded and the actual system is developed with a much

clear understanding of user requirements.

• Evolutionary Prototyping

Evolutionary prototyping also called as breadboard prototyping is based on

building actual functional prototypes with minimal functionality in the

beginning. The prototype developed forms the heart of the future

prototypes on top of which the entire system is built. By using evolutionary

prototyping, the well-understood requirements are included in the prototype

and the requirements are added as and when they are understood.

45

• Incremental Prototyping

Incremental prototyping refers to building multiple functional

prototypes of the various sub-systems and then integrating all

the available prototypes to form a complete system.

• Extreme Prototyping

Extreme prototyping is used in the web development domain.

It consists of three sequential phases. First, a basic prototype

with all the existing pages is presented in the HTML format.

Then the data processing is simulated using a prototype

services layer. Finally, the services are implemented and

integrated to the final prototype. This process is called

Extreme Prototyping used to draw attention to the second

phase of the process, where a fully functional UI is developed

with very little regard to the actual services.

46

47

48

